摘要:对当前我国地面水环境污染状况进行了归纳,认为氨氮污染是我国饮用水处理中普遍面临的问题。对饮用水中氨氮浓度过高可能产生的水质问题进行了探讨,认为可能造成饮用水中亚硝酸盐浓度过高。国内外饮用水标准的比较表明,欧洲国家对饮用水中氨氮有严格的要求,我国对水源水的氨氮限值有规定,但饮用水标准中没有规定,应该逐步推行氨氮标准。目前去除氨氮的最好方法是生物预处理技术。
关键词:饮用水 氨氮 水质标准
1 饮用水处理中氨氮问题现状
作为有机生命体的重要组成元素,氮在自然环境中存在一个循环过程。由于城市人口集中和城市处理相对不力,以及农业生产大量使用化学肥料,使地表水体中的氨氮达到了较高的浓度。
根据90年代中国环境状况公报[1~7]的统计(见表1),我国地表水环境污染状况堪忧,七大水系中仅长江、珠江情况较好,且水质有逐年下降的趋势,氨氮在地表水体超标污染物中出现频率非常高。
上海某水厂从黄浦江下游取水,1995年其原水氨氮变化如图1所示。从图中可以看出,该厂原水氨氮污染较严重,很多时间在2mg/l以上,最高可达6~7mg/l,用如此污染状况的原水生产自来水,需重视氨氮对饮用水水质的影响。
2 氨氮浓度过高时的问题
水中的氮主要以氨氮、硝酸盐氮、亚硝酸盐氮和有机氮几种形式存在。在特定条件下,如氧化和微生物活动,有机氮可能转化为氨氮。好氧情况下,氨氮又可被硝化细菌氧化成亚硝酸盐氮和硝酸盐氮。
表1 90年代我国七大水系污染状况统计
年份
项目
长江
黄河
珠江
淮河
松花江
辽河
海河
1992
比例
(%)
ⅰ、ⅱ:58;
ⅲ:22;
ⅳ、ⅴ:20
ⅰ、ⅱ:24;
ⅲ: 6;ⅳ、ⅴ:70
ⅰ、ⅱ:47;ⅲ:6;
ⅳ、ⅴ:47
ⅰ、ⅱ:13;ⅲ:20;
ⅳ、ⅴ:67
ⅲ:26;
ⅳ、ⅴ:74
ⅲ:14;
ⅳ、ⅴ:86
ⅰ、ⅱ:16;ⅲ:10;
ⅳ、ⅴ:74
主要
污染物
有机物、酚、氨氮
有机物、酚、氨氮
hg、氨氮
有机物、酚、氨氮
hg、氨氮、酚
有机物、酚、氨氮、hg、cu
有机物、氨氮
1993
比例
(%)
ⅰ、ⅱ:37;
ⅲ:31;ⅳ、ⅴ:32
ⅰ、ⅱ:13;
ⅲ:18;ⅳ、ⅴ:69
ⅰ、ⅱ:29;
ⅲ:40;
ⅳ、ⅴ:31
ⅰ、ⅱ:18.3;
ⅲ:15.7;ⅳ、ⅴ:66
ⅲ:38;
ⅳ、ⅴ:62
ⅲ:13;
ⅳ、ⅴ:87
ⅲ:50;
ⅳ、ⅴ:50
主要
污染物
mn、酚、氨氮、cu、as
mn、酚、bod、氨氮
氨氮、cu、as
mn、酚、氨氮
hg、氨氮、酚
mn、hg、氨氮、酚、cu
mn、酚、氨氮
1994
比例
(%)
ⅰ、ⅱ:42;
ⅲ:29;ⅳ、ⅴ:29
ⅰ、ⅱ:7;
ⅲ:27;
ⅳ、ⅴ:66
ⅰ、ⅱ:39
ⅲ:43;
ⅳ、ⅴ:18
ⅰ、ⅱ:16;
ⅲ:40;
ⅳ、ⅴ:44
ⅰ、ⅱ:6;
ⅲ:23;
ⅳ、ⅴ:71
ⅰ、ⅱ:32;
ⅲ:24;
ⅳ、ⅴ:44
主要
污染物
mn、酚、氨氮、cu、as
mn、酚、bod、氨氮
氨氮、as、
mn
氨氮、
mn
mn、氨氮、酚、cn
-
mn、酚、氨氮、bod
1995
比例
(%)
ⅰ、ⅱ:45;
ⅲ:31;
ⅳ、ⅴ:24
ⅰ、ⅱ:5;
ⅲ:35;
ⅳ、ⅴ:60
ⅰ、ⅱ:31;
ⅲ:47;
ⅳ、ⅴ:22
ⅰ、ⅱ:27;ⅲ:22;
ⅳ、ⅴ:51
ⅰ、ⅱ:4;
ⅲ:29;
ⅳ、ⅴ:67
ⅰ、ⅱ:42;
ⅲ:17;
ⅳ、ⅴ:41
主要
污染物
mn、酚、氨氮
mn、酚、bod、氨氮
氨氮、
mn
mn、氨氮
mn、氨氮、酚
mn、酚、氨氮、bod
1996
比例
(%)
ⅰ、ⅱ:38.8;
ⅲ:33.7;
ⅳ、ⅴ:27.5
ⅰ、ⅱ:8.2;
ⅲ:26.4;
ⅳ、ⅴ:65.4
ⅰ、ⅱ:49.5;
ⅲ:31.2;
ⅳ、ⅴ:19.3
ⅰ、ⅱ:17.6;
ⅲ:31.2;
ⅳ、ⅴ:51.2
ⅰ、ⅱ:2.9;
ⅲ:24.3;
ⅳ、ⅴ:72.8
ⅰ、ⅱ:39.7;
ⅲ:19.2;
ⅳ、ⅴ:41.1
主要
污染物
mn、酚、氨氮、cu
mn、酚、bod、氨氮
氨氮、as、
mn
mn、氨氮
mn、酚、氨氮、hg
mn、酚、氨氮、cu、hg
mn、酚、氨氮、bod
1997
比例
(%)
ⅰ、ⅱ、ⅲ:67.7;
ⅳ、ⅴ:32.3
ⅳ:66.7
ⅰ、ⅱ、ⅲ:62.5;
ⅳ:29.2;
ⅴ:8.3
干流以ⅲ、ⅳ为主
ⅳ:70.6
ⅴ以下:50
ⅴ以下:50
主要
污染物
mn、酚、bod
mn、酚、bod、氨氮
氨氮、hg、
mn
mn、氨氮
mn、酚、bod
mn、酚、氨氮、bod
mn、bod、氨氮
1998
比例
(%)
ⅰ:4;ⅱ:67;
ⅲ:4;
ⅳ:11;
ⅴ:4
ⅱ:24;
ⅲ:5;
ⅳ:47;
ⅴ以下:24
ⅰ:29;
ⅱ:36;
ⅲ:7;
ⅳ:22;
ⅴ:2;
ⅴ以下:4
ⅱ:11;
ⅲ:17;
ⅳ:18;
ⅴ:6;
ⅴ以下:48
ⅰ:5;
ⅱ:19;
ⅲ:4;
ⅳ:10;
ⅴ:9;
ⅴ以下:53
ⅰ:4.5;
ⅱ:2.3;
ⅲ:4.5;
ⅳ:22.7;
ⅴ:4.5;
ⅴ以下:61.4
ⅲ:4;
ⅳ:67;
ⅴ:21;
ⅴ以下:8
主要
污染物
mn、ss、氨氮
ss、酚
氨氮、石油、ss
mn、bod
mn、氨氮、石油、酚
mn、酚、氨氮
酚、石油
注ⅰ、ⅱ、ⅲ、ⅳ、ⅴ分别表示按照我国地面水环境质量标准划分的ⅰ、ⅱ、ⅲ、ⅳ和ⅴ类水体。
水中氨氮浓度并非固定不变,而是可在多种氮的存在形式间互相转化。我国地面水环境质量标准的说明[8]中指出了水中三氮(氨氮、亚硝酸氮和硝酸氮)出现的水质意义,见表2。
由表2可知,根据原水中三氮出现情况的不同,水质呈现不同的污染特征。但只要水中有氨氮出现,则表示水体受到新的污染,水体自净尚未完成。自来水厂面对这样的原水,为了保证饮用水安全,应该采取相应的水处理措施。
表2三种含氮化合物在原水中出现的意义
nh
+4-n
no
-2-n
no
-3-n
意义
+
-
-
水新近被污染
+
+
-
新近被污染,分解正在进行
+
+
+
水以前被污染,已开始分解并仍有新污染
-
+
+
水中污染物已分解,趋向自净
+
-
+
旧污染分解已完成,现又有新污染
-
+
-
污染已分解,但未完全自净或硝酸盐还原为亚硝酸盐
-
-
+
水中污染物都已分解并达到了净化
-
-
-
清洁水
注“+”表示在水中出现;“-”表示在水中不出现。
到目前为止还没有看到过饮用水中氨氮危害人体健康的报道,但在地表水体中如果存在较高的氨氮,能对水生生物造成毒害,毒害作用主要是由水中非离子氨(nh3)造成的。水中氨氮以铵根(nh+4)和非离子氨(nh3)两种形式存在,这两种成分的比例随水温和ph值变化,以铵根为主。水中的亚硝酸盐不稳定,易在微生物或氧化剂的作用下转化为硝酸盐和氨氮。硝酸盐和亚硝酸盐浓度高的饮用水可能对人体造成两种健康危害[1~7],即诱发正铁血红朊症(尤其是婴儿)和产生致癌的亚硝胺,这两种危害都是亚硝酸盐直接造成的,因而对硝酸盐的浓度限制较宽。
自来水中含高浓度的氨氮也可能产生亚硝酸盐的问题,尤其是在我国多层建筑广泛采用的屋顶水箱中。屋顶水箱容易受到二次污染,也容易造成死水,使自来水在水箱中停留较长时间才被用户使用。用含氨氮的自来水厂滤后水加氯后进行贮放试验,结果见图2。试验水样(滤后水)含氨氮1.38mg/l,加氯后水样的余氯为2.0mg/l,密闭贮存于5l棕色瓶内,放置在室内环境中,检测时从中取出少量水样分析余氯、氨氮和亚硝酸盐氮。试验期间水温从25℃逐渐升高至27℃。
由图2可知,2mg/l的余氯经2d就被消耗掉90%,同时开始进行硝化反应。在开始2d内氨氮稍有下降,应该是同水中余氯反应的结果。第5~8d,有一个硝化反应的高峰期,这段时间内氨氮浓度迅速下降,同时亚硝酸盐氮浓度迅速升高,最高时达到约0.7mg/l。
另外,饮用水中氨氮浓度较高,在消毒时会产生令人厌恶的嗅和味。
3 国内外饮用水标准对氨氮浓度的规定
美国、前欧共体和who所制定的饮用水标准,代表了目前世界的先进水平。由于常规处理难以去除氨氮,且西方国家近年水源保护较好,原水氨氮浓度不高,目前各国饮用水标准中对氨氮的规定不一,见表3。
表3 国内外饮用水标准中对氨氮限值 mg/l
标准
名称
原欧共体(1998)
中国(1985)
美国(1996)
日本(1993)
who(1992)
法国(1989)
荷兰(1984)
德国(1990)
韩国(1984)
氨氮
限值
0.5
-
-
-
1.5
0.5
0.2
0.5
0.5
从表3可以看出,在饮用水标准中对氨氮有规定的主要是欧洲国家,其他如美国、日本都没有规定。
我国现行的饮用水标准(gb 5749—85)中对氨氮没有规定,而文献[9]中推荐的一类水司(供水量100 ×104m3/d以上的自来水公司)88项指标中,规定氨氮(以nh3计)的标准值为0.5mg/l。我国生活饮用水水源水质标准[10]将饮用水水源分为ⅰ、ⅱ两级,其中对原水氨氮的规定是:ⅰ级、ⅱ级≤0.5mg/l。水质指标超过ⅱ级标准限值的水源水,不宜作为生活饮用水的水源。若限于条件需加以利用,应采用相应的净化工艺进行处理。综上所述,我国并不是缺少对饮用水源的氨氮规范,而是目前自来水厂采用的标准gb5749—85中,没有氨氮的限值。
去除污染原水中的氨氮,需要较高的经济投入。在我国目前的经济条件下,普遍要求处理水中的氨氮较难实施,但有条件的自来水厂或原水受氨氮污染严重的水厂,应该逐渐实施去除水中的氨氮,还要逐步将这一要求推广开来。
4 解决饮用水中氨氮的方法
解决饮用水中氨氮污染的根本方法是控制水源污染,在当前的实际情况下,应该在水厂中强化、增加处理工艺,去除原水中的氨氮。
目前生物法处理是去除原水氨氮最有效、最经济的方法。生物预处理技术是在常规处理之前进行生物处理,该工艺不仅能去除60%~90%的原水氨氮,而且对水中有机物(mn、toc等)、浊度、色度和锰等均有一定的去除效果,特别适合原水遭到较严重有机污染的水厂采用。除此之外,生物活性炭深度处理工艺也能去除水中的氨氮,但受工艺条件限制,去除能力有限。
有些水厂常采用折点加氯的方法来去除氨氮,在原水被有机物污染的情况下,折点加氯会产生大量有机氯化物,使饮用水的安全性下降,因而一般不提倡使用折点加氯工艺。
5 结论
目前我国地表水污染情况较严重,饮用水源大多受到氨氮污染。原水中较高的氨氮浓度预示着水体遭到新的有机污染,饮用水中的氨氮可能导致管网末梢的亚硝酸盐问题和嗅味问题。目前欧洲多数国家对饮用水中的氨氮浓度有较严格的规定。我国对饮用水水源的氨氮浓度也有类似限值,但目前自来水厂采用的饮用水标准gb 5749—85对氨氮却没有规定,应该逐步推行控制饮用水氨氮浓度的标准。解决饮用水氨氮问题的根本办法是控制水源污染,但在控制污染不力的情况下,只能加强自来水厂的除污能力,生物法预处理技术是目前解决饮用水中氨氮问题最有效、最经济的方法。
参考文献:
[1]中国环境状况公报[j].中国环境年鉴,1993,59-60.
[2]中国环境状况公报[j].中国环境年鉴,1994,79-80.
[3]中国环境状况公报[j].中国环境年鉴,1995,65-67.
[4]中国环境状况公报[j].中国环境年鉴,1996,88-89.
[5]中国环境状况公报[j].中国环境年鉴,1997,58-59.
[6]中国环境状况公报[j].中国环境年鉴,1998,167-168.
[7]中国环境状况公报[j].中国环境年鉴,1999,117-118.
[8]夏青,张旭辉.水质标准手册[m].北京:中国环境科学出版社,1990.
[9]汪光焘.城市供水行业2000年技术进步发展规划[m].北京:中国建筑工业出版社,1993,7.
[10]黄明明,张蕴华.给水排水规范实施手册[m].北京:中国建筑工业出版社,1993,10.