摘要:探讨了黄河高浊度水混凝沉淀浑液面沉迷与自然沉迷之间的相关性,经过对实验数据进行线性回归提出了混凝过程中浑液面沉速与自然沉速、含沙量、pam投加量之间的经验公式。运用该经验公式得出的浑液面沉速计算值与实测相对误差在0.43%-12.27%之间。
关键词:黄河 给水处理 高浊度水 混凝 沉淀
a study of relationship between precipitating rate of cloudy liquid level during coagulation and dose of coagulant
abs tract :the relationship between the preeipitating rate of the high-turbidity water of the yellow river caused by coagulation and the natural precipitating rate of the water is discussed and an empirical formula of relationship between the precipitating rate of cloudy liquid level during coagulation and the natural precipitating rate, sand content as well as dosage of pam is proposed through linear regression of the experimental data. the relative errors between the calculated values of precipitation of the cloudy liquid level obtained by applying the said empirical formuia and the actually measured values ranged between 0.43%~12.27%.
key words : yellow river; feed water treatment; high-turbidity water; coagulation; precipitation
混凝沉淀是黄河高浊度水处理常用的方法。提高浑液面沉速,节约药剂(pam)的投加量达到多出清水是高浊度水处理的主要目标。然而混凝过程极其复杂,影响浑液面沉速的因素有高浊度水的性质、pam投加量、速度梯度c、搅拌时间t等。因为高浊度水自然沉淀沉速与原水的性质密切相关。在实际处理一定组成的高浊度水时,可以借助实验得到的经验关系,根据浑液面的自然沉速以及所希望达到的浑液面沉速来确定pam的投加量。本文先采用正交实验的方法确定混凝过程的混合、反应的最佳水力条件,然后在此基础上研究浑液面沉速与pam投加量及高浊度自然沉速之间的关系。
1 实验方法
1.1 自然沉降实验 高浊度水采用郑州上街段黄河泥沙配制而成。试验过程中所有水样水温15±1℃。用nsy-1光电颗分仪测泥沙粒度,其当量直径dm由下式计算: dm=1/(∑(△pi/di)) 式中di——颗粒粒径,pi——粒径di颗粒占所有颗粒质量百分数。选出dm相近的几组水样用比重瓶测定其含沙量,以cw(kg/m3 )表示。然后用直径62mm,高500mm,有效体积1500ml的自制沉降筒做静置沉降实验,根据沉降曲线求得等速沉降段混液面沉降速度作为自然沉速,以从(mm/s)表示。 试样的含沙量cw,浑液面自然沉速u0,当量直径dm,见表1:
表1 试样情况
试样编号
cw/(kg.m
-3 )
dm/μm
uo/(mm.s
-1 )
1
46.5
5.5
0.0157
2
79.5
9.5
0.0175
3
84.2
9.4
0.0161
4
101.5
9.4
0.0130
5
58.0
12.8
0.0385
6
75.6
12.8
0.0270
7
94.5
12.8
0.0210
8
115.3
12.8
0.0161
9
35.5
18.4
0.0990
10
67.5
18.4
0.0492
11
83.2
18.4
0.0381
12
94.7
18.4
0.0345
13
46.0
25.3
0.1100
14
55.0
25.3
0.0955
15
64.0
25.3
0.0790
16
79.5
25.3
0.0645
17
69.8
30.1
0.0860
18
125.5
30.1
0.0467
表2 各试样实测浑液面沉速与计算值对照
试样编号
uo/(mm.s
-1 )
cw/(kg.m
-3 )
d/(mg.l
-1 )
u/(mm.s
-1 )
u计算/(mm.s
-1 )
相对误差/%
1
0.0157
46.5
7.5
0.202
0.214
-6.01
2
0.0175
79.5
15
0.351
0.342
2.59
3
0.0161
84.2
20
0.465
0.481
-3.50
4
0.0130
101.5
25
0.459
0.446
2.74
5
0.0385
58
10
0.498
0.524
-5.26
6
0.099
35.5
2.5
0.209
0.219
-4.61
7
0.099
35.5
4.5
0.624
0.605
3.03
8
0.099
35.5
6.5
1.149
1.144
0.43
9
0.099
35.5
8.5
1.721
1.821
-5.79
10
0.099
35.5
10.5
2.604
2.625
-0.82
11
0.0492
67.5
12
0.702
0.697
0.75
12
0.0381
83.2
15
0.571
0.604
-5.70
13
0.0345
94.7
20
0.716
0.751
-4.89
14
0.011
46
10
0.273
0.268
1.95
15
0.011
46
15
0.584
0.540
7.49
16
0.011
46
20
0.0878
0.889
-1.27
17
0.011
46
25
1.295
1.309
-1.06
18
0.011
46
5
0.0742
0.081
-8.59
19
0.0955
55.3
10
1.223
1.188
2.88
20
0.079
64
10
0.724
0.813
-12.27
21
0.0645
79.5
12.5
0.668
0.727
-8.78
22
0.086
69.8
10
0.786
0.763
2.93
23
0.0467
125.5
20
0.588
0.625
-6.35
1.2 加药混凝实验 实验所选的药剂为江苏南天生产的阳离子型pam,阳离子度30%,配制成0.5%溶液。 取1.5l上述配制的水样置于2l的烧杯中,以600r/s的转速搅拌5min,然后投加pam,再调整转速和时间确定混凝的水力条件:笔者通过对搅拌速度。搅拌时间、pam投加量做正交实验得出具有最大浑液面沉速时的最佳的速度梯度与搅拌时间乘积,即(ct)umax为2180,这与崔俊华验证的(ct)umax为1900-2000[1]相近。在此基础上每次取1.5l上述配制的水样置于2l的烧杯中,先以600r/s转速搅拌5min,然后投加不同量pam,以d(mg/l)表示pam投加量,达到要求的ct值(2180)混凝后,缓慢注入沉降筒做沉淀实验,测定浑液面沉速(同自然沉速测定方法),以u(mm/s)表示。同时把拟合的浑液面的沉速以u计算(mm/s)表示,结果如表2。
2 试验结果分析
研究表明,在高浊度水处理中,自然沉速uo、pam投加量d与泥沙颗粒总表面积及含量有如下关系: u0 =f2 (得出最佳s0 ,cw),d=f1 (s0 ,cw ) 式中s0 ——质量比表面积,m2 /kg。 于是可以推测u0与d有相关性。而高浊度水混凝浑液面沉速不仅与含沙量有关,而且与颗粒因素有关。用uo 可以部分地表征高浊度水的颗粒因素(从表1也可反映出来),从而在实际处理一定组成的高浊度水时可以借助试验得到的经验关系,根据浑液面自然沉速以及所期望达到的浑液面沉速来确定pam的投药量。 分析表2中试样6-10以及14-18在该两种泥沙颗粒组成下投药量与浑液面沉速表现出明显的相关性。如图 1,图2所示(其中у表示logu,x表示logd)。
综合含沙量和u0于是可以假定logu=k1 loguo +k2 logc+k3 logd+k4 进行线性回归,求得经验式。 通过matlab编程运算,得出k1 =0.82,k2 = -1.532,k3 =1.732,k4 =1.849 总偏差s总 =2.245,s回 =2.228,s残 =0.198,f=71.12,当置信度α=0.01时,查f分布表,f0.01 (3,19)=5.01[2] 。而f=71.12>f0.01 (3,19)=5.01,可见回归方程是显著的。计算得出的浑液面沉速和相对误差见表2。
3 结论
在大量的实验数据基础卜进行回归分析,得出在黄河高浊度水处理中混凝浑液面沉速由下式计算: logu=0.821loguo+1.732logd-1.532logc+1.849,具有较高的置信度。这可为高浊度水处理构筑物设计和参数选取提供一定的依据;同样在给定产水量的情况下,为达到预定的浑液面沉速此式也可作为投药量的参考。
参考文献:
[1] 崔俊华 高浊度混凝最优gt值研究(一)[j]河北建筑科技学 院学报,1998,15(4):7-10 [2] 韩芝隆 概率论与数理统计[m]. 北京:化学工业出版社,2000