论文网首页|会计论文|管理论文|计算机论文|医药学|经济学论文|法学论文|社会学论文|文学论文|教育论文|理学论文|工学论文|艺术论文|哲学论文|文化论文|外语论文|论文格式
中国论文网

用户注册

设为首页

您现在的位置: 论文大全网 >> 管理论文 >> 其它管理学论文 >> 正文 会员中心
 管理学基本理论论文   成本管理论文   旅游管理论文   行政管理论文   人力资源管理论文   市场营销论文   秘书文秘论文   档案管理论文   其它管理学论文
 物流管理论文   投资决策论文   战略竞争管理论文   企业管理论文   工商管理论文   公共管理论文   财务管理论文
核磁共振测井基本理论研究与介绍
阅读技巧ctrl+d 收藏本篇文章

核磁共振测井基本理论研究与介绍

核磁共振的基本原理有经典物理和量子力学两个版本,这两种解释方法是统一的。其中经典物理的解释方法是为了易于理解,量子力学的解释方法则更为严谨。本文主要从这两个方面入手对核磁共振理论进行简要分析与介绍,同时针对常见cpmg序列原理进行分析与说明。
  1 核磁共振磁矩理论介绍
  1.1 磁矩概念介绍
  核磁共振理论中一个最重要的名词就是磁矩,它体现了流体原子在静磁场下的核磁能量。由普通物理学得知闭合载流线圈磁矩μ=isn,其中i为电流强度、s为闭合面积、n为与电流方向成右手螺旋法则的单方向矢量[1]。闭合载流线圈的磁矩为一矢量,其长度为is而方向与该载流线圈的方向矢量相同。当在磁感应强度(磁通密度)为b的均匀磁场中,作用在载流线圈上的磁矩mf为磁矩μ与b的矢量积mf=μbsinθ。图1为磁矩示意图。
  图1 磁矩示意图
  磁矩mf力图使载流线圈磁矩μ的方向与磁场b一致,在磁场b中载流线圈具有的势能为e=-μbcosθ,其中θ是μ和b的夹角。由此可见μ和b方向一致时,系统势能最低,最为稳定;当两者反向时系统势能最高,最不稳定。
  1.2 磁矩宏观表现介绍
  在实际应用中,人们关注的是大量粒子的宏观行为,即大量微观体系行为的宏观表现。例如核磁测井所关注的是地层中大量氢核的综合效应,而单个氢核的特性只是理解宏观特性的基础。含有磁矩的某种样品,当没有外磁场时,其磁矩取向是随机的。宏观表现为没有磁性。当有外磁场时,将会有更多的磁矩顺着外磁场的方向排列,各个磁矩都绕着磁场方向进动,核自旋的空间取向将与塞曼能级相对应。达到热平衡时,磁矩的取向服从波尔兹曼分布,纵向分量与磁场方向一致的核磁矩数目略大于反方向的磁矩数目,其矢量和不再等于零,呈现一定大小的宏观磁矩,称为磁化矢量。图2为磁矩的宏观表现示意图。
  图2 核矩的宏观表现示意图
  单位体积的磁化矢量称为磁化强度,通常用m0表示,如
  下式:
  m0=nμi2/kt×b0=§×b0 (1)
  其中§=nμi2/kt称为该样品的磁化率,μi为样品的氢原子核磁矩,n为单位体积样品内的粒子数,k为玻耳兹曼常数,t为样品的热力学温度。
  2 核磁共振基本理论分析
  2.1 经典物理解释
  核磁共振测井主要测量地层中的氢原子信息,可用量子力学做精确描述。但在工程应用中为描述方便,往往采用经典力学或半经典力学方法。为此先说明核磁旋进的概念。图3是一个旋转着的陀螺,当它的旋转轴偏离垂线时,通过重心的重力作用并不能使它倒下,而是使其轴线沿图中圆环所示的轨迹和方向做圆周运动,不断改变自旋轴的方向。这种运动在力学中叫作旋进或进动。如果做自旋运动的带电物体具有磁矩,若磁矩偏离外磁场方向,将绕磁场方向进动[2]。按照经典理论,具有磁矩的原子核,由于自旋运动相当于一个高速旋转着的陀螺。磁矩在外磁场b0中受到一个力矩μ×b0的作用,在此力矩的作用下核磁矩绕b0进动,称为拉莫尔进动,其角频率为(即对应该点氢原子核的拉莫尔频率)ω0=-γb0,其中γ为氢原子的旋磁比系数,即动量矩与磁矩的比值。
  当γ>0的核绕b0作左旋圆运动e-iω0t;γ<0的核绕b0作右旋圆运动eiω0t。其磁矩μ的旋转示意图如图3右侧所示。当核磁矩μ以角频率ω0围绕b0进动时,若对原子核系统再加上一个垂直于b0且角频率为ω1的旋转磁场b1,在ω1=ω0的条件下,将能使μ和b0之间的夹角发生变化。磁矩μ在静磁场b0中的能量为e=-μb0cosθ,当θ发生变化时,μ在b0中的能量也发生变化。若θ增加,则是核磁矩从外加交变磁场中吸收能量,这就是核磁共振现象。发生核磁共振的条件是ω1=ω0=γb0,磁性核的进动称之为拉莫尔进动,ω0称之为拉莫尔频率,它与静磁场的磁感应强度b0成正比。
  2.2 量子力学解释
  原子核从某一能量状态转变到另一能量状态称为原子核在能级之间的跃迁。对于1h核来说,i=1/2,2i+1=2,所以只有两个能级:-1/2i和+1/2i。跃迁就只能在这两个能级之间进行,根据量子力学理论,若将电磁波作用于原子核系统,当电磁波频率所决定的量子的能量hn正好等于原子核两个相邻能级之间的能量差时,原子核就会吸收电磁波,引起核能态在两个相邻能级之间的跃迁,这就是核磁共振现象[3]。在此系统中,低能态的核不断从旋转磁场中吸收能量而转变为高能态的核,原来过剩的低能态的核就逐渐减少,吸收信号的强度就会减弱,最后完全消失,达到饱和。产生核磁共振的条件是:
  hν (2)
  式中,?=h/2π,h是普朗克常数,ν是电磁波的频率。共振频率ν和g(或γ)及磁感应强度b0成正比,而当指示核素选定后(如1h),旋磁比γ为常数,共振频率只与b0有关。对质子(1h):
  (3)
  2.3 核磁弛豫现象
  当施加垂直于b0方向的射频脉冲停止后,磁化矢量通过自由进动向b0方向恢复,使原子核从高能态的非平衡状态,向低本文由毕业论文http://收集整理能态的平衡状态恢复。这种高能态的核不经过辐射而转变为低能态的过程叫弛豫。从微观机制上说,驰豫是由局部涨落磁场引起的。偶极-偶极相互作用、分子转动、化学位移各向异性、临近存在电四极核等,都可以产生局部磁场。而固体中晶格震动,液体中的布朗运动等,使得局部磁场随时间涨落。驰豫包含两个组成部分:磁化矢量m在z轴上的分量mz,最终要趋向初始磁化强度m0,称为纵向弛豫,纵向弛豫的时间常数用t1表示,称为纵向弛豫时间;m在(x,y)平面上的分量mxy最终要趋向于零,称为横向弛豫。横向弛豫的时间常数用t2表示,称为横向弛豫时间[4]。如图4表示为核磁弛豫现象示意图。

  • 上一个管理论文:
  • 下一个管理论文:
  •  更新时间:
    没有相关管理论文
    | 设为首页 | 加入收藏 | 联系我们 | 网站地图 | 手机版 | 论文发表

    版权所有 www.11665.com © 论文大全网 All rights reserved