论文网首页|会计论文|管理论文|计算机论文|医药学|经济学论文|法学论文|社会学论文|文学论文|教育论文|理学论文|工学论文|艺术论文|哲学论文|文化论文|外语论文|论文格式
中国论文网

用户注册

设为首页

您现在的位置: 论文大全网 >> 经济学论文 >> 中国经济论文 >> 正文 会员中心
 财务税收论文   发展战略论文   国际经济论文   行业经济论文   新经济学论文   经济学理论论文   中国经济论文   国际贸易论文   地方战略论文
 证券金融论文   其他金融相关论文   房地产经济论文   统计学论文   经管期刊
基于时间序列模型的中国GDP增长预测分析

基于时间序列模型的中国gdp增长预测分析

  1 引言
  作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(英文gross domestic product,简写为gdp)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。自从国家统计局于1985年建立相关制度以后,gdp核算已经成为决策层掌握宏观经济运行状态的重要手段,如果能够对gdp做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据,从而也为制定宏观经济中长期发展规划、区域经济发展战略和宏观经济政策提供坚实的保障。
  熊志斌(2011)深入分析了时间本文由论文联盟http://收集整理序列模型与神经网络(nn)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了arima模型和nn模型,并根据一定算法对两种模型进行了集成。将gdp时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用arima分析技术构建线性主体模型,然后用nn模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行gdp预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度gdp在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际gdp数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对gdp的主要季节和趋势特征分析的基础上,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的tramo-seats季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952年至2008年的上海gdp增长率数据,实证研究其内在变动机制,将gdp增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。实证研究结果表明:在上海gdp增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海gdp增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978年至1989年期间,纯劳动结构效应是gdp增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990年至2008年期间,纯生产率效应是gdp增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度gdp数据分别构建了arima和arch模型,同时利用gmdh自组织方法尝试建模,经过bon-ferroni-dunn检验,表明与单一模型相比,组合模型的拟合能力更强。预测分析的实证研究表明,基本gmdh组合的gdp模型预测精度更高,无论是经济正常增长时期,还是在经济出现较大波动时期,组合模型的可靠性与准确性都相对较高[4]。

  传统预测方法的原理其实非常简单,主要是抓住事物趋势的典型特征,然后推测某些社会经济现象的发展变化。时间序列模型预测是在充分掌握历史数据的基础之上,分析目标对象随着时间改变的发展规律,从而准确预测其未来的变化情况。时间序列建模本质上属于“外推法”,也就是通过对时间序列的处理来研究目标变化,然后利用外推机制将内在规律推演到未来。由于在gdp分析和预测的实际应用中,传统方法运用存在很大的难度,而arima 模型是目前经济预测中的公认的比较先进的时间序列模型之一,因此本文选用的arima模型对中国1952年至2010年的gdp总量进行短期预测,具有重要的现实意义和学术价值。
  2 时间序列模型
  2.1 arima模型的一般介绍
  时间序列进行分析的基本思想是:某些数据序列可以看作是随着时间t 而随机变化的变量,该序列的单个数据构成序列值虽然不确定,但是整个序列却呈现一定的变化规律,可以用数学模型去近似地描述。现实社会中,人们常常运用时间序列arima 模型来进行实证研究,以达到最小方差意义下的最优预测效果[5]。arima模型,英文名称为autoregressive integrated moving average,全称为求和自回归移动平均模型,简记为arma(p,d,q),模型结构如下:
  
  2.2 arima模型的简洁定义
  定义之一:如果通过 次差分,序列 能够变为平稳,但 序列,也就是差分序列并不平稳,那么通常认为序列 是 阶单整序列,记为 。特别地,如果序列 不需要进行差分,也即其本身是平稳的,则可称为零阶单整,记为 。
  定义之二:设 是 阶单整序列,即 ,记 , 为平稳序列,即 ,则可对 建立arma(p,q)模型为:本文由论文联盟http://收集整理
  
  式中, 是自回归系数; 是自回归的具体阶次; 是序列的移动平均系数, 是移动平均的具体阶次; 是一个标准的白噪声序列。
  定义之三:经过 次差分变换后的arma(p,q)模型称为arma(p,d,q)模型。
  3 arima模型的建模步骤
  3.1 数据来源及说明
  本文研究的样本区间设定为1952-2010年,数据分别来源于《新中国60年统计资料汇编》和中经网统计数据库。为更好地观测数据,本文分别绘制出该历史期间中国gdp的历史统计数据(图1)、一阶差分序列(图2)、二阶差分序列(图3)和取自然对数后的一阶差分序列(图4)。
  3.2 arima模型中 的确定
  由本文的简洁定义可知,arima模型中 是序列 通过差分变换后成为平稳的单整序列的阶数,因此采用单位根检验方法来检验序列的平稳性以及求得 值,本文选用adf(augmented dickey-fuller test)检验[6]。从1952-2010年中国gdp的时间序列趋势图(图1),清楚地观察到gdp的上升趋势非常明显,因此在单位根检验时应该把常数项和时间趋势项都考虑进去,检验结果(见表1)显示,gdp序列以较大的p值,即100%的概率接受原假设,则接受存在单位根的结论。将gdp序列做1阶差分,然后对 进行adf检验,此时选择常有常数项和时间趋势项,检验结果显示,gdp序列以较大的p值,即99.24%的概率接受原假设,就存在单位根的结论。再对 做1阶差分,对 做adf检验,此时选择不含常数项和时间趋势项,检验结果显示,二阶差分序列 在1%的显著性水平下拒绝原假设,接受不存在单位根的结论,因此可以确定gdp序列是2阶单整序列,即 值取为2, 。
  3.3 arima模型中 和 的确定
  计算 序列的自相关系数(ac)和偏相关系数(pca),见表2。比较 序列的自相关系数(ac)和偏相关系数(pca),可知 序列的自相关系数ac在4阶截尾,偏相关系数pca在2阶截尾,则取模型的阶数 和 ,建立arima(4,2,4)模型。
  3.4中国arima(4,2,4)模型的预测
  利用arima(4,2,4)模型对中国gdp数据进行样本内预测,具

体的预测结果及相对误差参见表3。
  4 结论
  根据本文所构建arima模型预测,首先我们进行样本期一期的单点精准预测,得到2011年中国gdp预测值为461635.0157亿元,然后又将样本期间扩大到2015年,进行样本外多期动态预测,得到2011年至2015年五个年度的中国gdp预测结果为485789.81、541186.95、602901.31、671653.27、748245.38,表明未来五年中国的经济增长仍将处于一个水平很高的上升通道。
  与传统的趋势模型相比,arima时间序列模型属于外推预测法,具有自己独特的优点。由于传统的预测方法,基本上只是对某种典型趋势特征现象比较适用,但是在现实工作中,许多经济现象所表现出来的时间序列资料却并不具有典型趋势特征,更多情况下可能是一种完全随机性质的,这样传统方法建模就不能吻合随机性质的要求,从而对预测效果带来了很大的影响[7]。先根据一个时间序列进行模型识别,然后进行不断建模试验,并加以相关的诊断技术,根据情况再做出必要调整,识别、估计、诊断等环节反复进行,直到找到最优模型为止,因此对于各类的时间序列来讲,arima模型都比较适合,是时间序列预测法中迄今最为通用的模型[8]。 针对非平稳序列,通过差分、取自然对数等方法,arima可将其转变为零均值的平稳随机序列,以便有效进行预测分析。通过ar和ma项的添加,从而使的残差进入模型,从而大大提高了模型的精度。但是由于假定时间序列,无论是过去的模式,还是未来的发展模式,arima建模法都视为一致,因此它的预测往往只在短期内比较有效。
  本文通过平稳线检验、阶数识别、参数估计、模型诊断等过程,对中国1952年至2010年的国内生产总值(gdp)构建了arima模型,从拟合的效果来看,当然还有待于做进一步的完善,但本文所做出的精准预测,无疑将为相关部门的工作、规划提供科学依据。总的来说,单元时间序列arima 模型样本内静态预测精度非常之高,相对误差一般控制在万分之几以内,从定量的角度也能反映经济变量发展的一定趋势,可以做出较为精准的预测。 在现实工作和理论研究中,我们应可以根据arima 模型的预测结果,对经济形势未来的发展进行预判,事先提出解决方案,从而可以更有效提高经济发展质量,减少不必要的损失。作为一种重要的预测技术,时间序列预测方法由于模型相对简单,对资料的要求比较。单一,因此在实际工作中的应用非常广泛。在今后的计量经济研究中,我们要根据所要解决的问题,认真分析问题的特点,不断进行建模试验,综合考虑多方因素,以便得到最优的模型。
  • 上一个经济学论文:
  • 下一个经济学论文:
  •  更新时间:
    基于应用语言学视阈下的英语文化导入教学研…
    基于入门阶段日语平假名与片假名有效教学法…
    基于ESA理论的高职大学英语课堂教学设计研究
    基于Blog的电子档案袋评价应用于二语写作教…
    基于Android系统的移动应用数据分析探究
    基于Web的高职院校电子类实训室综合系统的设…
    基于LabView的核磁共振测井仪测试系统的研制…
    基于聚类及融合技术的数字图像文字提取与识…
    基于MATLAB的简单图像处理系统的实现
    基于DSP的AVS帧内预测的优化算法
    基于电子技术的氧碳对太阳能级直拉单晶硅品…
    基于BP神经网络输电线路山火隐患点识别
    | 设为首页 | 加入收藏 | 联系我们 | 网站地图 | 手机版 | 论文发表

    版权所有 www.11665.com © 论文大全网 All rights reserved